On a novel integrable generalization of the sine-Gordon equation

نویسندگان

  • J. Lenells
  • A. S. Fokas
چکیده

We consider an integrable generalization of the sine-Gordon (sG) equation that was earlier derived by one of the authors using bi-Hamiltonian methods. This equation is related to the sG equation in the same way that the Camassa-Holm equation is related to the KdV equation. In this paper we: (a) Derive a Lax pair. (b) Use the Lax pair to solve the initial value problem on the line. (c) Analyze solitons. (d) Show that the generalized sG and sG equations are related by a Liouville transformation. (e) Derive conservation laws. (f) Analyze travelingwave solutions. AMS Subject Classification (2000): 35Q55, 37K15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

Integrable discretizations of derivative nonlinear Schrödinger equations

We propose integrable discretizations of derivative nonlinear Schrödinger (DNLS) equations such as the Kaup–Newell equation, the Chen–Lee–Liu equation and the Gerdjikov–Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reduc...

متن کامل

Classical Matrix sine - Gordon Theory

The matrix sine-Gordon theory, a matrix generalization of the well-known sine-Gordon theory, is studied. In particular, the A3-generalization where fields take value in SU(2) describes integrable deformations of conformal field theory corresponding to the coset SU(2)× SU(2)/SU(2). Various classical aspects of the matrix sine-Gordon theory are addressed. We find exact solutions, solitons and bre...

متن کامل

Nonabelian Sine-gordon Theory and Its Application to Nonlinear Optics

Using a field theory generalization of the spinning top motion, we construct nonabelian generalizations of the sine-Gordon theory according to each symmetric spaces. A La-grangian formulation of these generalized sine-Gordon theories is given in terms of a deformed gauged Wess-Zumino-Witten action which also accounts for integrably perturbed coset conformal field theories. As for physical appli...

متن کامل

Noncommutative Sine-gordon Model Extremizing the Sine-gordon Action

As I briefly review, the sine-Gordon model may be obtained by dimensional and algebraic reduction from 2+2 dimensional self-dual U(2) Yang-Mills through a 2+1 dimensional integrable U(2) sigma model. I argue that the noncommutative (Moyal) deformation of this procedure should relax the algebraic reduction from U(2) → U(1) to U(2) → U(1)×U(1). The result are novel noncommutative sine-Gordon equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009